实训项目 14、基于专家知识的决策树分类

1、概述

基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单 数学统计和归纳方法等,获得分类规则并进行遥感分类。分类规则易于理解,分类过程也符 合人的认知过程,最大的特点是利用多源数据。

专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。难点是规则的获取,可以来自经验总结,如坡度小于 20 度是缓坡等; 也可以通过统计的方法从样本中获取规则,如 C4.5 算法、CART 算法、S-PLUS 算法等。

本课程以 Landsat TM5 影像和这个地区对应的 DEM 数据为例,学习基于专家知识决策 树分类。数据存放在"\12.基于专家知识决策树分类\数据"文件夹内,影像和 DEM 经过了精 确配准。

2、步骤

2.1 规则获取

根据经验和专家知识获取如下规则:

Class1(缓坡植被):NDVI>0.3, slope<20

Class2(朝北陡坡植被): NDVI>0.3, slope>=20, 90<=aspect<=270

Class3(朝南陡坡植被): NDVI>0.3, slope>=20, , aspect<90 或 aspect>270

Class4(水体): NDVI<=0.3,0

Class5 (裸地): NDVI<=0.3, b4>=20

Class6(无数据区,背景):NDVI<=0.3, b4=0

注: 其中, NDVI 为归一化植被指数; slope 为坡度; aspect 为坡向; bN 代表第 N 个波段。

2.2 制作决策树

(1)首先打开待分类数据及其他多源数据。打开 File > Open,选择数据文件夹内的 boulder_tm.dat 和 boulder_dem.dat;

注: boulder_tm.dat 为待分类图像, boulder_dem.dat 为 DEM 数据。

(2)打开新建决策树工具,路径为 Toolbox/Classification/Decision Tree/New Decision Tree, 如下图所示,默认显示一个节点和两个类别;

ENVI Decision Tree	
File Options Help	
Node 1	
Here to	
Class 0 Class 1	

(3)首先按照 NDVI 来区分植被与非植被。单击节点 Node 1,在弹出的对话框内输入节 点名(Name)和条件表达式(Expression),如下图所示;

NDVI>0.3	
E	(pression)
{ndvi} gt 0.3	22

(4) 点击 OK 后, 在弹出的 Variable/File Pairings 对话框内需要为 {ndvi} 指定一个数据源, 如下图所示。点击面板中显示 {ndvi} 的表格, 然后选择 boulder_tm.dat 即可。 注:因为所选数据具有波长信息, ENVI 自动根据波长识别红波段与近红外波段, 如果没有 波长, 需要手动指定这两个波段。

{ndvi}	boulder_tm. dat	-
		_

(5) 在进行条件表达式(Expression) 编写时,需要符合 IDL 的语法规则,包括运算符和 函数名。常用的运算符和函数如下表所示。

表达式	部分可用函数
基本运算符	+, -, *, /
	正弦 Sin(x)、余弦 cos(x)、正切 tan(x)
三角函数	反正弦 Asin(x)、反余弦 acos(x)、反正切 atan(x)
	双曲线正弦 Sinh(x)、双曲线余弦 cosh(x)、双曲线正切 tanh(x)
	小于 LT、小于等于 LE、等于 EQ、不等于 NE、大于等于 GE、大于 GT
关系/逻辑	and, or, not, XOR
	最大值(>)、最小值 (<)

	指数(个)、自然指数 exp
	自然对数 alog(x)
其他符号	以 10 为底的对数 alog10(x)
	取整——round(x)、ceil(x)、fix(x)
	平方根(sqrt)、绝对值(abs)

(6) ENVI 决策树分类器中的变量是指一个波段或作用于数据的一个特定函数。如果为 波段,需要命名为 bN,其中 N 为 1~255 的数字,代表数据的某一个波段;如果为函数,则 变量名必须包含在大括号中,即{变量名},如{ndvi}。如果变量被赋值为多波段文件,变量名 必须包含一个写在方括号中的下标,表示波段数,比如{pc[1]}表示主成分分析的第一主成分。 支持特定变量名,如下表所示,用户也可以通过 IDL 编写自定义函数。

变量	作用
slope	计算坡度
aspect	计算坡向
ndvi	计算归一化植被指数
tascap[n]	穗帽变换, n 表示获取的是哪一分量。
pc[n]	主成分分析,n表示获取的是哪一分量。
lpc[n]	局部主成分分析, n 表示获取的是哪一分量。
mnf[n]	最小噪声变换,n表示获取的是哪一分量。
lmnf[n]	局部最小噪声变换, n 表示获取的是哪一分量。
stdev[n]	波段 n 的标准差
lstdev[n]	波段 n 的局部标准差
mean[n]	波段 n 的平均值
lmean[n]	波段 n 的局部平均值
min[n]、max[n]	波段 n 的最大、最小值
<pre>lmin[n]、lmax[n]</pre>	波段 n 的局部最大、最小值

(7) 第一层节点根据 NDVI 的值划分为植被和非植被,如果不需要进一步分类的话,这个影像就会被分成两类: class0 和 class1。

(8)对 NDVI 大于 0.3,也就是 class1,根据坡度划分成缓坡植被和陡坡植被。在 class1 图标上右键,选择 Add Children。单击节点标识符,打开节点属性窗口,Name 为 Slope<20,在 Expression 中填写: {Slope} It 20。

节点名	表达式
ndvi>0.3	{ndvi} gt 0.3
0≤b4≤20	b4 le 20 and b4 ge 0
b4 = 0	b4 eq 0
slope<20	{slope} It 20
north	{aspect} It 90 and {aspect} gt 270

(9)同样的方法,将所有规则输入,末节点图标右键 Edit Properties,可以设置分类结果的 名称和颜色,最后结果如下图所示。

注:可以选择菜单 Options > Show Variable / File Pairings 进行参数与变量的数据源设定。 结果如下图所示。

💓 Variable	/ File Pairings		23
{ndvi}	boulder_tm. dat		
{b4}	Band 4:boulder_tm.dat		
{slope}	Band 1:boulder_dem. dat		
{aspect}	Band 1:boulder_dem.dat		
<			•
Hide			

(10)保存决策树。

D:\ D:\	itput Directory:
Anter Outp	out Filename [.txt] Choose
):\desisio	ntree. txt

2.3 执行决策树

(1)选择 Options > Execute,可以执行决策树。由于使用了多源数据,各个数据可能拥有不同的坐标系、空间分辨率等。在弹出的 Decision Tree Execution Parameters 对话框(如图)中,需要选择输出结果的参照图像,这里选择 boulder_tm.dat,即输出的分类结果的坐标系和空间分辨率等信息与 boulder_tm.dat 相同。

(2) 选择输出路径和文件名,点击 OK 即可。

注: 此步骤中可以选择空间范围裁剪。

Sele	ct Base	Filena	me and	l Proj	ection	1
oulder	_dem. dat	E [UTM,	Zone	13N,	30 Me	ters
•	//s	III		2.8	1	F.
Spatis	l Subset	t Full	. Scen	e		
)utput Enter (Result (Dutput F	to 🧿 F; ilenam:	ile e Cho	O Me	mory	
n. 15±124	- 表材01					

(3) 如果 ENVI 没有自动打开结果文件,可以手动打开分类结果。如下图所示。

3、实训要求

(1)每人以给定的数据为基础,按照本实训指导书的步骤,进行决策树分类。

(2) 统计各类地物的面积(单位:平方米),所占百分比。

(3)以文字+截图的形式,简要撰写实训报告,包括主要步骤和结果,问题与解决办法, 意见和建议等。

4、提交结果

(1) 最终分类结果: 1 份, envi 标准格式。

(2) 实训报告: 1 份, doc 格式。