任务1全站仪坐标数据采集及传输

数字测图采用的仪器有全站仪和 GNSS-RTK。全站仪由于使用简单、方便,受外界测量 环境影响小,测量数据稳定可靠,在测量的很多领域中得到广泛的应用,全站仪数据采集 也是数字化测图野外数据采集最普遍的方式。

1.1 碎部点的含义

地面上的地物、地貌虽然形态多种多样,但都可以通过一些具有决定性的点通过连成直 线或曲线来描绘表达,把这些决定地物、地貌形态特征的点称为特征点。地形图测量中需采 集地物、地貌的特征点并展绘到图纸上,这些特征点统称为碎部点。地形图测量实际上就是 测定地物、地貌碎步点的坐标及其高程,依此绘制出各种地物和地貌。

1.2 全站仪碎部点的测量方法

地形图上的每一点,都对应唯一的不同的坐标和高程,因此,测量碎部点的坐标、高程 是地形图测量的首要工作。在实际作业过程中,大多数的碎部点是可以直接或间接测量出坐 标的。

1.2.1 直接测量坐标——极坐标法

极坐标法是碎部测量中最常用的方法。如图 4-1 所示, Z 为为则站点, P 为欲测碎步点, 观测己知点 O 和 P 点之间的角度 α,得到 ZP 的方位角 OZP,加上天顶距 β、平距 D,由公 式 4-1 可求出 P 坐标和高程。

图 4-1 极坐标法

$$X_{P} = X_{Z} + D \cdot \cos \alpha_{ZP}$$

$$Y_{P} = Y_{Z} + D \cdot \sin \alpha_{ZP}$$

$$H_{P} = H_{Z} + I + \frac{D}{\tan \beta} - V$$

$$(4-1)$$

1.2.2 间接测量坐标法

由于通视等测量条件的限制,并不是每个碎部点都能够直接测量其坐标,而通过间接 测量的方法也可以达到最终测量出碎部点坐标的目的。

1.直线延长偏心法

如图 4-2 所示, Z 为测站点, 在测得 A 点坐标后, 欲测定 B 点, 但 Z、B 点间不通视。此时, 可在地物边线方向找到 B₁或 B2 点作为辅助点, 先用极坐标法测定其坐标, 再量取 BB₁(或 BB2)的距离 D₁(或 D₂), 即可按公式 4-2 求出 B 点的坐标:

$$X_{B} = X_{B_{1}} + D_{1} \cdot \cos \alpha_{AB_{1}}$$

$$Y_{B} = Y_{B_{1}} + D_{1} \cdot \sin \alpha_{AB_{1}}$$

$$(4-$$

图 4-2 直线延长偏心法

内业绘图时,只要以 AB₁(或 AB₂)为方向,B₁(或 B₂)为起点,延长 D₁(或缩短 D₂)即 可画出 B 点。 2.角度偏心法

如图 4-3 所示, Z 为测站点, 欲测定 B 点,由于 B 点无法达到或无法立镜,将棱镜安 置在以 ZB 为半径的圆弧上的 B₁ (或 B₂),先照准棱镜 B₁ (或 B₂),再照准目标 B 测量方 向值 αZB,即可按公式 4-3 求出 B 点的坐标:

$$X_{B} = X_{Z} + D_{ZB_{1}} \cdot \cos \alpha_{ZB}$$

$$Y_{B} = Y_{Z} + D_{ZB_{1}} \cdot \sin \alpha_{ZB}$$

$$(4-3)$$

图 4-3 角度偏心法

在一般全站仪都有角度偏心法测量的程序,可直接测量出 B 的坐标,在地籍、房地产 测量中的房屋测量得到广泛的应用。

3.距离交会法

如图 4-4 所示,已知碎部点 A、B,欲测碎部点 P,则可分别量取 P 点至 A、B 点的距离 D₁、 D₂,即可求出 P 点的坐标。

先根据已知边 D_{AB} 和 D_1 、 D_2 求出角 a、 β :

$$\alpha = \arccos \frac{D_{AB}^{2} + D_{1}^{2} - D_{2}^{2}}{2D_{AB} \cdot D_{1}}$$

$$\beta = \arccos \frac{D_{AB}^{2} + D_{2}^{2} - D_{1}^{2}}{2D_{AB} \cdot D_{2}}$$
(4-4)

再根据公式 4-5 即可求得 XP、YP:

$$X_{P} = \frac{X_{A} \cdot \cot \beta + X_{B} \cdot \cot \alpha + (Y_{B} - Y_{A})}{\cot \alpha + \cot \beta}$$

$$Y_{P} = \frac{Y_{A} \cdot \cot \beta + Y_{B} \cdot \cot \alpha + (X_{B} - X_{A})}{\cot \alpha + \cot \beta}$$

$$(4-5)$$

内业绘图时,只要分别以A、B为圆心D₁、D₂为半径作圆弧,相交的其中一个点就是所要求的P点。

4.角度前方交会法

如图 4-5 所示, 欲测碎部点 P, 由于 P 点无法达到或无法立镜。在己知控制点 A 上, 观测已知点 M 和 P 点之间的角度 α; 在已知控制点 B 上, 观测已知点 N 和 P 点之间的角度 β, 即可求出 P 点的坐标。

如图 4-5 角度前方交会法

根据观测角求出 AP 方向方位角 αAP=αAM+α, BP 方向方位角 βBP=βBN+β, 可按公式 4-6 求出 P 点的坐标:

$$X_{P} = X_{A} + \frac{Y_{A} \cdot \cot \beta_{BP} + Y_{B} \cdot \cot \beta_{BP} - X_{A} + X_{B})}{\cot \alpha_{AP} + \cot \beta_{BP}} \cdot \cot \alpha_{AP}$$

$$Y_{P} = \frac{Y_{A} \cdot \cot \alpha_{AP} - Y_{B} \cdot \cot \beta_{BP} - X_{A} + X_{B}}{\cot \alpha_{AP} + \cot \beta_{BP}}$$

$$(4-6)$$

内业绘图时,只要分别以A、B为站点,绘出方位角为αAP、βBP的方向线,相交的点就是所要求的P点。

1.3 全站仪坐标采集步骤

全站仪款式虽然多样,但基本功能相似,都是采用极坐标法,通过测量碎部点的与测 站之间的方位角、天顶距、距离,根据全站仪的器高、碎部点的棱镜高,全站仪自动计算出碎 部点的坐标和高程。因此全站仪进行坐标采集的步骤基本相同。

1.3.1 全站仪坐标采集的一般步骤

全站仪坐标据采集的一般步骤是:设站前准备→设站→测站检查→坐标采集→测站检 查→采集结束。

1.设站前准备

主要是在全站仪输入测站点、后视点、检查点等控制点的已知坐标和高程数据。控制点比 较少,可以手工输入,如果控制点比较多,则应采用计算机等工具来输入。

2.设站

(1)一般要求:应在图根或图根级别以上控制点设站,如果少部分碎部点该站不能采集,可适当分站。

(2)设站步骤:新建项目名→输入测站点坐标→输入仪器高→输入后视点坐标→输入 棱镜高→对准后视点测量→后视点检查无误→第三点检查无无误→设站完成。

(3)测站检查的目的是避免设站错误,设站错误通常有三个方面的原因:一是设站实 地位置错误;二是控制点坐标输入不正确,仪器高、棱镜高输入错误;三是控制点坐标本身 有误。如仅以定向点作检查,则只能检查边长是否有误,不能发现方向是否有误,因此要以 第三个控制点进行检查。

3.采集数据及检查

设站完成后,即可进行碎部点数据采集。本测站数据采集完成后,要到控制点重新检查, 以检核测站在测量过程中仪器是否发生移动、故障等情况。

1.4 南方 NTS-342 全站仪坐标数据采集

1.4.1 南方 NTS-342 全站仪的认识

1.NTS-342 全站仪的主要部件名称,如图 4-6

图 4-6 NTS-342 全站仪

2. NTS-342 全站仪的操作键见下表 4-1:

表 4-1 全站仪操作键的功能

按键	功 能
α	输入字符时,在大小写输入之间进行切换
·	打开软键盘
*	打开和关闭快捷功能菜单
Ċ	电源开关,短按切换不同标签页,长按开关电源
Func	功能键
Ctrl	控制键
Alt	替换键
Del	删除键
Tab	使屏幕的焦点在不同的控件之间切换
B. S	退格键
Shift	在输入字符和数字之间进行切换
S. P	空格键
ESC	退出键
ENT	确认键
	在不同的控件之间进行跳转或者移动光标
0-9	输入数字和字母
	输入负号或者其它字母
•	输入小数点
测量键	在特定界面下触发测量功能(此键在仪器侧面)

3.NTS-342 全站仪显示符号意义见下表 4-2:

表 4-2 全站仪显示符号的含义

显示符号	内容
V	垂直角
V%	垂直角(坡度显示)
HR	水平角(右角)
HL	水平角(左角)
HD	水平距离
VD	高差
SD	斜距
N	北向坐标
Е	东向坐标
Z	高程
m	以米为距离单位
ft	以英尺为距离单位
dms	以度分秒为角度单位
gon	以哥恩为角度单位
mil	以密为角度单位

PSM	棱镜常数(以 🖿 为单位)
PPM	大气改正值
PT	点名

1.4.2 南方 NTS-342 全站仪坐标数据采集步骤

1.在"项目"建立工作文件

工作文件要简单、方便记忆。全站仪每次开机都是以最近建立的项目文件为当前工作文件,如要打开其他项目,则在"打开项目"中打开。

defa	ault	in the second		*		新建项目			 (
项目	常规	1	新建项目			名称:	04-03 0	2	
数据	建站	2	打开项目		A	作者:		-	
计算	采集	3	删除项目			注系・			
设置	放样	4	另存为		В	「工作中・			
校准	道路	5	回收站						
•			E	翌 11:	00	8 📀			11:00

图 4-7 新建项目

2.建站

(1)输入测站点坐标、仪器高、棱镜高、入后视点坐标;如仪器已有坐标则直接调用,没有的话则新建坐标。(注意:在按"设置"键前,一定要确保已经对准后视点)

defa	ault	Alteritet	*		已知点	建站		* 🚥
项目	常规	1 린	知点建站		测站	2		•
数据	建站	2 测	站高程	A	仪高 [0.0	000 m	镜高 0.000	m
计算	采集	3 后	视检查					
设置	放样	4 后	方交会测量	в	后视点	3		•
校准	道路	5 βΈ	Z螺仪寻北		当前HA	8.1940	dms	设置
•			18:	57	8			14:34

图 4-8 建站

3.采集坐标数据

对准目标,点击"测距",即可显示测量的数据,在"测量"栏显示方位角、距离等数据,在"数据"栏显示测量的坐标数据,在"图形"栏显示测量点的图形关系。

输入点名、编码、棱镜高等数据后,点击"保存",即可保存数据。如果点名自动累加, 不需要改棱镜高,则点击"测存"即可直接可保存数据。

defa	ault			★ 🚥			单点测量		le la primer		* 🚥
项目	常规	1	点测量		1	HA	359.5830	dms	点名	100	
数据	建站	2	距离偏差	A		VA	166.1447	dms	编码		•
计算	采集	3	平面角点			HD WD	6.517 1.595	m m	连线		•
设置	放样	4	圆柱中心点	В		SD	6.710	m	镜高	0.000	m
校准	道路	5	对边测量				测距		保存	测	뗘
1		- 4, 7		14:41		8	测	量	数据 图	形	14:50

图 4-9 采集数据

 4. 测站检查:测量后视点的坐标和高程,与己知点作比较,确认无误后保存该数据, 方可进行下步测量。采集数据结束前,重新进行测站检查,检查无误,本站采集数据结束。

1.5 全站仪数据管理和传输

1.5.1 全站仪数据管理

对全站仪里以对当前项目中的数据,包括输入的数据和采集的数据,均可进行查看、添 加、删除、编辑等操作。

01-12-00		in an		$\star \square$	坐标数据			(
项目	常规	1	原始数据		名称	编码		类型	N 占	
					1	FZ		测量	0.000	
数据	建站	2	坐标数据		2	FZ		测量	1311.0	
计值	亚隹	12	<i>^¹</i> 纪和 新年		3	FZ		测量	2755.0	
и Л	不未	ľ	細心的文化的		4	FZ		测量	3927.0	
设置	放样	4	数据图形		5	FZ		测量	3368.0	
		1			4				E	
校准	道路	5	查看图片				删除	编辑	増加	
•				16:36	8			E	图 11:55	

图 4-10 数据管理

1.5.2 全站仪数据传输

要输入全站仪的控制点、测量点、放样点数据,如果数量少,可以通过手工输入和输出, 但是如果数量大的话,则只能通过文件形式整体输入和输出。数据文件的输入和输出有三种 方法,一是利用与仪器配套的专用传输软件传输,二是利用 CASS 等制图软件传输,三是 把数据直接传输到U盘。利用 CASS 等制图软件或U盘传输是比较常用的方法。

1.利用 CASS 等制图软件传输

CASS 软件有数据传输功能,可以把各种全站仪的测量数据输入或输出。

(1)连接全站仪,设置全站仪的通讯参数,注意全站仪的端口要与计算机的端口一 致。

(2) 在 CASS "数据处理"菜单下选择"读全站仪数据"子菜单,弹出如图所示的对话框,选中的相应型号的全站仪,通讯参数要与全站仪设置的一致。

全站仪内存数据转	换							
仪器: 南方	中文NTS-320坐标 ▼	☑联机						
通讯口 ◎ COM1 ◎ COM2 ◎ COM3	波特率 ● 1200 ● 2400 ● 4800 ● 9600 数据位	校验 ● 无校验 ◎ 奇校验 ◎ 偶校验						
© COM4 © COM5 © COM6	● 8位 ● 7位 停止位 ● 1位 ● 2位	超时 10 秒						
通讯临时文件: 选择文件 C:\Program Files\CASS2008\SYSTEM\tong×un.								
CASS坐标文件: 选择文件 D:\12.17.dat								
转换 取消								

图 4-11 数据输出

在对话框最下面的"CASS坐标文件:"下的空栏中输入想要保存的文件名,然后点击 "转换"按钮即进行数据输出。

在 CASS "数据处理"菜单下选择"坐标数据发送"子菜单,选择相应型号的全站仪, 按相应的提示,即可把计算机上的数据发送到全站仪。

2. 数据直接传输到 SD 卡或 U 盘

目前,很多新款全站仪配置 SD 卡或可直接插入 U 盘,进行数据的输入和输出,不需要进行任何设置,应用非常方便。以南方 NTF-342 为例:

在全站仪的USB口插入U盘(本款仪器配置 SD卡)。

在全站仪进行如图 4-12 操作,在"导出位置"选择"SD 卡",在"数据类型"、"数据格式"中根据实际需要选择,点击"继续",即可把数据传输到 SD 卡中;选择"优盘",可把数据传输到 U 盘。从 SD 卡或 U 盘把数据输入到全站仪的操作类似。

图 4-12 数据传输